mls-2 and vab-3 Control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans.
نویسندگان
چکیده
Glia are essential components of nervous systems. However, genetic programs promoting glia development and regulating glia-neuron interactions have not been extensively explored. Here we describe transcriptional programs required for development and function of the C. elegans cephalic sheath (CEPsh) glia. We demonstrate ventral- and dorsal-restricted roles for the mls-2/Nkx/Hmx and vab-3/Pax6/Pax7 genes, respectively, in CEPsh glia differentiation and expression of the genes hlh-17/Olig and ptr-10/Patched-related. Using mls-2 and vab-3 mutants, as well as CEPsh glia-ablated animals, we show that CEPsh glia are important for sensory dendrite extension, axon guidance/branching within the nerve ring, and nerve ring assembly. We demonstrate that UNC-6/Netrin, expressed in ventral CEPsh glia, mediates glia-dependent axon guidance. Our results suggest possible similarities between CEPsh glia development and oligodendrocyte development in vertebrates, and demonstrate that C. elegans provides a unique environment for studying glial functions in vivo.
منابع مشابه
Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons
Visualizing neural-circuit assembly in vivo requires tracking growth of optically resolvable neurites. The Caenorhabditis elegans embryonic nervous system, comprising 222 neurons and 56 glia, is attractive for comprehensive studies of development; however, embryonic reporters are broadly expressed, making single-neurite tracking/manipulation challenging. We present a method, using an infrared l...
متن کاملNotch-Dependent Induction of Left/Right Asymmetry in C. elegans Interneurons and Motoneurons
Although nervous systems are largely bilaterally symmetric on a structural level, they display striking degrees of functional left/right (L/R) asymmetry. In Caenorhabditis elegans, two structurally symmetric pairs of sensory neurons, ASE and AWC, display two distinctly controlled types of functional L/R asymmetries (stereotyped versus stochastic asymmetry). Beyond these two cases, the extent of...
متن کاملGlia-neuron interactions in the nervous system of Caenorhabditis elegans.
A century and a half after first being described, glia are beginning to reveal their intricate and important roles in nervous system development and function. Recent studies in the nematode Caenorhabditis elegans suggest that this invertebrate will provide important insight into these roles. Studies of C. elegans have revealed a connection between glial ensheathment of neurons and tubulogenesis...
متن کاملPROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans.
Sensory neurons are an animal's gateway to the world, and their receptive endings, the sites of sensory signal transduction, are often associated with glia. Although glia are known to promote sensory-neuron functions, the molecular bases of these interactions are poorly explored. Here, we describe a post-developmental glial role for the PROS-1/Prospero/PROX1 homeodomain protein in sensory-neuro...
متن کاملSynthesis of a Growth-Associated Cerebrocortical Neurons in vitro Protein by Embryonic
Proteins synthesized by embryonic rat cortical cultures were studied under conditions that were either permissive or nonpermissive to neurite outgrowth. Freshly dissected cortex from embryonic day 17 rat pups was mechanically dissociated and plated on poly(L-lysine) substrate in the presence of (1) serum-free media, which allowed neuronal survival but no outgrowth; (2) serum, which allowed surv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 135 13 شماره
صفحات -
تاریخ انتشار 2008